Gary Tse

Research Interests: Cardiac Electrophysiology; Cardiovascular Epidemiology; Data Analytics; Predictive Risk Modelling; Population Health

Biography: Gary's research focuses on the development of predictive risk models for rare and common cardiovascular diseases. He has a joint appointment in two countries, currently serving as Professor of Cardiology in China and Reader in Public Health in the United Kingdom.


Selected publications:
Ju, C., Zhou, J., Lee, S., Tan, M.S., Liu, T., Bazoukis, G., Jeevaratnam, K., Chan, E.W.Y., Wong, I.C.K., Wei, L., Zhang, Q.*, Tse, G.* (2021) Derivation of an electronic frailty index for predicting short-term mortality in heart failure: a machine learning approach. ESC Heart Failure. PMID: 34080784. Impact factor: 4.411.

Tse, G.*, Zhou, J., Lee, S., Liu, T., Bazoukis, G., Mililis, P., Wong, I.C.K., Chen, C., Xia, Y., Kamakura, T., Aiba, T., Kusano, K., Zhang, Q., Letsas, K.P. (2020) Incorporating latent variables using nonnegative matrix factorization improves risk stratification in Brugada syndrome. Journal of the American Heart Association. e012714. PMID: 33170070. 5-year impact factor: 5.501.

Zhou, J., Lee, S., Wang, X., Li, Y., Wu, W.K.K., Liu, T., Cao, Z., Zeng, D.D., Leung, K.S.K., Wai, A.K.C., Wong, I.C.K., Cheung, B.M.Y., Zhang, Q.*, Tse, G.* (2021) Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong. Nature NPJ Digital Medicine. JCRQ1, Impact factor: 11.653.